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Background. Leishmania infection is a cofactor in the heightened cellular activation observed in patients with
American visceral leishmaniasis and human immunodeficiency virus type 1 (HIV) infection, with or without pro-
gression to AIDS (AVL/HIV). Thus, the persistence of a high parasite load despite antileishmanial therapy could be
responsible for the continued immune stimulation.

Methods. CD8+ T cells expressing CD38, parasite load, lipopolysaccharide (LPS), soluble CD14, macrophage
migration inhibitory factor (MIF), intestinal fatty acid–binding protein (IFABP), and proinflammatory cytokines
(interleukin 1β, interleukin 6, interleukin 8, interleukin 17, interferon γ, and tumor necrosis factor) were measured
in 17 patients with AVL/HIV, 16 with HIV, and 14 healthy subjects (HS).

Results. Lower Leishmania parasitemia was observed after antileishmanial and antiretroviral therapies.
However, higher levels of CD38+ on CD8+ T cells were observed in both clinical phases of leishmaniasis, compared
with HIV cases. AVL/HIV and HIV patients showed higher levels of LPS and IFABP than HS. Proinflammatory cy-
tokine levels were significantly augmented in patients with active coinfection, as well as those with remission of
Leishmania infection. LPS levels and Leishmania infection were positively correlated with CD38 expression on
CD8+ T cells and with IL-6 and IL-8 levels.

Conclusions. LPS levels along with the immune consequences of Leishmania infection were associated with el-
evated cellular activation in coinfected patients. As a consequence, secondary chemoprophylaxis for leishmaniasis or
even the use of antiinflammatory drugs or antibiotics may be considered for improving the prognosis of AVL/HIV.

Keywords. visceral leishmaniasis-HIV/AIDS coinfection; microbial translocation; inflammatory cytokines.

Coinfection with Leishmania organisms and human
immunodeficiency virus type 1 (HIV) has been found
with increasing frequency in several regions worldwide,
mainly because of increasing geographical overlap of
these 2 diseases. The first reported cases of visceral
leishmaniasis–associated HIV infection were from the
Mediterranean basin [1]. Brazil accounts for most of
the cases in the Americas, and approximately 1.5%–2%
of confirmed American visceral leishmaniasis (AVL)
cases reported during 2001–2008 involved HIV coin-
fection [2, 3], thereby confirming that HIV infection
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enhances the risk of developing AVL in endemic areas and vice
versa [1, 3].

The impairment of the immune system caused by HIV and
the depletion of specific lymphocyte subsets compromise the
immune mechanisms that are involved in parasite control in
AVL/HIV patients [4, 5], leading to increased parasite load,
drug resistance, and frequent relapses [1, 6, 7]. Similarly, Leish-
mania infection can contribute to faster progression to AIDS
by either increasing the plasma viral load [8, 9] or enhancing
immune activation through stimulation by parasite antigens
[10, 11]. The reduction of CD4+ T lymphocytes counts due to
AVL [12, 13] further contributes to the lymphocyte depletion
that already occurs in HIV infection [14]. Importantly, low
CD4+ T-cell counts (<200 cells/mm3) were maintained during
the clinical remission of patients with AVL/HIV, with or
without AIDS despite antiretroviral therapy (ART) and satis-
factory antileishmanial therapy [15].

Chronic immune activation is a stronger predictor of HIV/
AIDS progression than plasma viral load [16, 17]. The cell acti-
vation enhances the transcription of the integrated virus, which
then infects new targets, increases T-cell proliferation, and
results in cell death induced by the activation of both CD4+ and
CD8+ T-cell memory populations, resulting in an exhaustion of
immune resources [18, 19]. High levels of plasmatic proinflam-
matory cytokines can also contribute to this activated status [18].
Antigenic stimulation as a consequence of other infections,
such as tuberculosis [20], cytomegalovirus infection [21], and
hepatitis B and C [22, 23], constitutes another cause of HIV-
associated immune activation. Recently, our group reported
high levels of cellular activation and low CD4+ T-cell counts in
AVL/HIV patients in remission despite anti-Leishmania
therapy and undetectable or low viral loads. Leishmania infec-
tion was thought to be the cofactor responsible for the en-
hanced cellular activation observed in patients coinfected with
HIV [11], especially those with the visceral form of leishmania-
sis. This finding suggests the inefficient control of the parasite
after antileishmanial therapy, which may justify the use of sec-
ondary prophylaxis [7].

Another potential mechanism associated with chronic
immune activation is mediated by gut microbial products [24].
The massive depletion of memory CD4+ T cells in mucosal
lymphoid tissue during acute HIV infection results in disrup-
tion of the anatomo-functional gastrointestinal barrier, enabling
the translocation of luminal microbiota into the circulation [25,
26]. Microbial translocation has already been observed in other
conditions not related to infectious diseases, such as inflamma-
tory bowel disease [27], graft versus host disease [28], and idio-
pathic CD4 lymphocytopenia [29]. Mucosal invasion by
leishmanial amastigotes and the systemic lymphocyte depletion
observed in AVL patients [12, 30, 31] could constitute the im-
munopathogenic basis for the lipopolysaccharide (LPS)–related
activation of lymphocytes and release of proinflammatory

cytokines [32]. In this scenario, an overlap in cellular activation
due to infections with both HIV and Leishmania organisms
would enhance the proinflammatory state, thereby worsening
the effector response and the subsequent clinical outcome of
coinfected patients [32–34].

The mechanism responsible for the maintenance of immune
activation during clinical remission is not clear. Considering
that Leishmania infection has been suggested to be the cofactor
responsible for the heightened cellular activation independent
of CD4+ T-cell numbers and viral load [11], we hypothesized
that the persistence of a high parasitic load even after antileish-
manial therapy could be responsible for the continued immune
stimulation.

MATERIALS ANDMETHODS

Study Population
This cross-sectional study included patients with AVL/HIV; 12
had active disease without previous antileishmanial therapy,
and 9 were in the remission phase for at least 6 months after
the end of antileishmanial treatment and had no signs or symp-
toms of active leishmaniasis. Four patients were evaluated in
the 2 phases of the disease. The diagnosis of AVL was con-
firmed by the visualization of amastigotes in Giemsa-stained
bone marrow smears. Ten patients with AVL and without HIV
infection, who were studied elsewhere [32], were used as con-
trols. All laboratory parameters measured in this study were
compared with those of these patients and showed significant
differences (Supplementary Table).

Sixteen HIV/AIDS patients without previous leishmaniasis
were enrolled in the study and paired with coinfected patients
on the basis of viral load. All AVL/HIV and HIV patients
received antiretroviral therapy according to Brazilian guidelines
for at least 1 year [35, 36]. Fourteen volunteers without
leishmaniasis or HIV/AIDS were included as healthy subjects
(HS).

Ethics Statement
Written informed consent was obtained from all participants.
The study was approved by the Fundação Oswaldo Cruz and
the IPEC ethical committees.

Immunologic and Virologic Assessments
To determine the absolute T-lymphocytes counts, monoclonal
antibodies specific for CD4, CD8, and CD3 conjugated to fluores-
cein isothiocyanate (FITC), phycoerythrin (PE), and PerCP,
respectively, were used with a BDTrue Count reagent kit (BD
Biosciences, Franklin Lakes, NJ). Samples were acquired using
a FACSCalibur and analyzed with Multiset software (BD). The
results were expressed as the number of cells per cubic millimeter.
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Plasma HIV RNA levels were quantified using a branched
DNA assay (Siemens, Versant HIV RNA 3.0, Tarrytown, NY).
The lower limit of detection for this assay was 50 copies/mL.

Isolation of Peripheral Blood Mononuclear Cells (PBMCs) and
Lymphocyte Activation Analysis
PBMCs were obtained as described elsewhere [11] and labeled
with anti-CD8 FITC and anti-CD38 PE monoclonal antibodies
(BD Simultest, BD Biosciences, San Jose, CA). Fixed cells were
acquired (through at least 10 000 events) on a FACSCalibur and
analyzed with CellQuest software (BD Biosciences). The analy-
sis region was established by first gating on the CD3+ T lym-
phocytes. The results were expressed as the percentage of
CD38-positive cells among the total CD8high T cells.

Quantification of Lipopolysaccharide (LPS), Soluble CD14
(sCD14), and Intestinal Fatty Acid–Binding Protein (IFABP)
Plasma Levels
Plasma samples were stored at −70°C until analysis. The
samples were diluted in endotoxin-free water, and LPS levels
were quantified using a commercial assay kit (Limulus amebo-
cyte lysate QCL-1000; Cambrex, Milan, Italy). The results were
expressed as picograms per milliliter, and the sensitivity level
was 10 pg/mL. sCD14 levels were measured by enzyme-linked
immunosorbent assay (ELISA; sCD14 Quantikine; R&D
Systems, Minneapolis, MN); the results were expressed as
nanograms per milliliter, and the minimum detection limit was
125 pg/mL. IFABP levels were determined by ELISA (Duo Set;
R&D Systems). The results were expressed as picograms per
milliliter, and the minimum detection limit was 31.2 pg/mL.

Cytokine Measurement
A multiplex biometric immunoassay containing fluorescence-
labeled microbeads was used for plasma cytokine measure-
ments (Bio-Rad Laboratories, Hercules, CA). The following
cytokines were quantified: interferon γ (IFN-γ), tumor necrosis
factor (TNF), interleukin 1β (IL-1β), interleukin 6 (IL-6), inter-
leukin 8 (IL-8), interleukin 17 (IL-17), and macrophage inflam-
matory protein 1β (MIP-1β). Cytokine levels were calculated
with Luminex technology (Bio-Plex Workstation; Bio-Rad Lab-
oratories). Data analysis was performed using the software pro-
vided by the manufacturer (Bio-Rad Laboratories). A range of
0.51–8000 pg/mL of the recombinant cytokines was used to es-
tablish the standard curves and sensitivity of the assay.

Macrophage migration inhibitory factor (MIF) levels were
measured by ELISA (Duo Set; R&D Systems), and the results
were expressed as picograms per milliliter; the minimum detec-
tion level was 31.2 pg/mL.

Quantification of Leishmania Organisms in Blood Samples by
Quantitative Polymerase Chain Reaction (PCR)
DNA extraction from blood (200 µL) was performed using a
DNeasy blood and tissue kit and a spin-column protocol

(Qiagen, Valencia, CA) according to the manufacturer’s in-
structions. DNA concentrations and enrichment relative to
protein in all of the samples were determined at 260/280 nm
with a spectrophotometer (NanoDrop 2000, Thermo Scientific,
Wilmington, DE), and DNAwas stored at –70°C until use.

Leishmania load was estimated by using a quantitative PCR
assay in accordance with previously published protocol [37].
We used major surface protease-associated gene (MAG-1) and
kinetoplast DNA (kDNA) as the molecular targets. MAG-1 is
specific since it was earlier designed against mag gene sequenc-
es only known to be present in Leishmania infantum [38].
Briefly, specific primers based on MAG-1 consisted of 3.75
pmol of forward primer (AGAGCGTGCCTTGGATTGTG),
3.75 pmol of reverse primer (CGCTGCGTTGATTGCGTTG),
and 2.5 pmol of TaqMan probe (FAMT-GCGCACTGCACT
GTCGCCCCC-TAMRA). Primers and probes based on kDNA
were –AATGGGTGCAGAAAT CCCGTTC (3.75 pmol), CCA
CCACCCGGCCCTATTTTAC (3.75 pmol), and FAM-CCCC
AGTTTCCCGCCCCGGA-TAMRA (2.5 pmol).

Absolute quantification of Leishmania organisms was deter-
mined by comparison with a standard curve constructed using
a 10-fold serially diluted sample of L. infantum DNA, with
106–10−3 parasites per reaction tube. The isolate used was from
a patient with visceral leishmaniasis from Natal-RN/Brazil and
was typed as L. infantum (IOC 563). The assay was performed
in a 10-µL final volume containing 20 ng of DNA.

Amplification and detection were performed using an ABI
Prism 7500 sequence detection system (Applied Biosystems,
Carlsbad, CA). Standards, samples, and negative controls were
analyzed in triplicate for each run. The cycling parameters were
50°C for 2 minutes, 95°C for 10 minutes, and 40 cycles of 95°C
for 15 seconds and 60°C for 1 minute. The results were ex-
pressed as parasitic forms (PF) per milliliter of blood. The sen-
sitivity of the real-time PCR for MAG-1 was 0.1 parasite/mL.

Statistical Analysis
The Mann–Whitney U test, Spearman test, and Kruskal-Wallis
test were performed using GraphPad Prism software, version
5.0 (GraphPad Prism Inc., San Diego, CA). The values were ex-
pressed as medians and interquartile ranges. A multivariate
statistical analysis was performed through multiple linear re-
gression (SPSS software, version 9.0) to determine the influence
of intervening variables on the percentage of CD38-positive
cells among the total population of CD8high T-cells (dependent
variable). Absolute CD4+ T-cell counts, absolute viral load
(presented as copies/milliliter), leishmaniasis (defined as
present or absent), and LPS, sCD14, IFABP, and MIF levels
were considered as independent variables. The influence of in-
tervening factors, such as LPS level, sCD14 level, viral load, and
presence or absence of leishmaniasis, on the levels of proin-
flammatory cytokines (see dependent variables, described
above) was also assessed.
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RESULTS

During active disease, the percentage of CD38-positive cells
among CD8+ T-lymphocytes was already elevated in AVL/HIV
patients (82.5% [75.7%–90.1%]). In addition, this percentage
was as high as that for patients in the remission phase of leish-
maniasis (93.5% [87%–97.9%]; Figure 1A). The cellular activa-
tion status was higher in the AVL/HIV group, compared with
the HIV-AIDS group (55.8% [49%–64%]). As expected, the
lowest levels of cellular activation were found in HS (30.7%
[28.6%–34%]).

The next step was to investigate whether the elevated para-
site load was responsible for the maintenance of immune

stimulation. AVL/HIV patients had a much higher parasite
load, as determined by MAG-1 quantification, during active
disease (53 356 PF/mL [34 913–108 786 PF/mL]), compared
with coinfected patients in the remission phase (1.2 PF/mL [1–
22 640 PF/mL]; P < .05; Figure 1B). These results indicate that
antileishmanial therapy was successful in reducing the number
of circulating parasites. As expected, during active disease, the
parasite levels in the coinfected patients were higher than those
in the AVL-only patients (active, 2856 PF/mL [1440–15 350
PF/mL]). The parasite load was positively correlated with the
percentage of CD38-positive cells among CD8+ T cells in the
active AVL/HIV patients (r = 0.60; P < .05; Figure 1C). Surpris-
ingly, no correlation was observed in the remission phase, as

Figure 1. Cellular activation levels and blood quantification of Leishmania infantum DNA in patients with American visceral leishmaniasis and human
immunodeficiency virus type 1 infection, with or without AIDS (AVL/HIV). A, Percentage of CD38+ cells among CD8+ T lymphocytes in AVL/HIV patients
during the active phase of AVL (solid squares) and the remission phase of AVL (solid triangles), in HIV patients (solid circles), and in healthy subjects
(stained squares). The Wilcoxon matched-pairs t test was used for 4 individuals evaluated before and after antileishmanial therapy. Data for each of these
patients are identified by a different color. B, Real-time polymerase chain reaction (PCR) analysis of the parasite load was performed on blood samples col-
lected from AVL/HIV patients during active disease (solid squares) and during remission (solid triangles). Patients with AVL only were included as controls
for both clinical phases of leishmaniasis (active, open squares; remission, open triangles). The results are expressed as the number of parasitic forms (PF)
per milliliter of blood. C, Correlation between the parasite load and the percentage of CD38+ cells among CD8+ T cells in active AVL/HIV patients. D, Corre-
lation between the parasite load and the percentage of CD38+ cells among CD8+ T cells in AVL/HIV patients in remission. Each point represents 1 subject.
Horizontal bars indicate the median value. Dashed lines represent the sensitivity of the real-time PCR assay.
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high levels of activation were observed despite the lower para-
site load (Figure 1D). Parasite load was also quantified with
primers targeting kDNA minicircles [37], and the results were
similar to those for MAG-1. Active AVL/HIV patients showed
the highest kDNA copy numbers, whereas for patients in the
remission phase, they were significantly lower (active, 132 000
PF/mL [25 000–288 000 PF/mL]; remission, 178 PF/mL [62–
18 000 PF/mL]). Thus, we suggest that having leishmaniasis
with its associated pathologic damage is a background factor
for the observed enhanced cellular activation and that such ac-
tivation may not be directly associated with the presence of the
parasite itself.

Because the majority of AVL/HIV patients had undetectable
or low viral loads and reduced parasitemia (Supplementary
Table) after therapy, we further investigated whether LPS could
be influencing T-cell activation [24, 32]. Patients with active AVL/
HIV had much higher median levels of LPS (52 pg/mL [49.5–
57.7 pg/mL] than HS (26 pg/mL [14–29 pg/mL]; P < .001).
However, the levels were similar to those observed in HIV pa-
tients (50.6 pg/mL [45.7–53 pg/mL]; Figure 2A).

Enhanced circulating levels of sCD14 were observed in active
AVL/HIV patients, compared with HIV patients. The diffe-
rence was more pronounced when coinfected patients were
compared with HS (Figure 2B and Supplementary Table). Posi-
tive correlation was detected between LPS and sCD14 levels
(r = 0.40; P < .05; Figure 2C). Interestingly, LPS and sCD14
levels were still elevated during the remission phase, and the
levels were similar to those observed in active AVL/HIV pa-
tients (Figure 2A and 2B).

Considering that gut damage has been implicated in the in-
creased intestinal permeability and microbial translocation into
the circulation [25, 26, 39, 40], we evaluated whether the Leish-
mania–HIV association could lead to enhanced enterocyte
damage. AVL/HIV showed augmented IFABP levels, but these
levels were not different from those of HIV patients (Figure 2D).
All of the groups presented significantly higher IFABP levels
than HS (P < .001). On examination of all patients infected
with HIV, a positive correlation was verified between IFABP
and LPS levels (r = 0.40; P < .05), suggesting the occurrence of
intestinal damage (Figure 2E). To some extent, these results in-
dicate that tissue damage is an indirect key factor in the
ongoing T-cell activation observed in patients with AVL/HIV,
even after receipt of antileishmanial therapy.

MIF is a proinflammatory cytokine that is released in re-
sponse to many stimuli, including endotoxemia (such as due to
high LPS levels) [49]. In comparison with HS, AVL/HIV (active
and remission phase), and HIV-AIDS patients showed signifi-
cantly higher levels of MIF (P < .001), although no significant
difference was found between coinfected patients and HIV pa-
tients (Figure 2F).

To determine which factors were associated with the high
activation levels observed in the coinfected patients, a

multivariate statistical analysis was performed. The model
showed that the presence of Leishmania infection influenced
T-cell activation (P < .001). Additionally, we observed a sig-
nificant positive correlation between LPS and CD38 on CD8+

T-lymphocytes, after adjustment for CD4+ T-cell count, HIV
viremia, and sCD14, IFABP, and MIF levels (P < .001; Table 1).
Leishmania load was not included as a variable in the model
because it was not present in all 3 patient groups evaluated
(Table 1).

Similar to T-cell activation, the plasma levels of proinflam-
matory cytokines were also highly elevated in coinfected
patients, compared with those in HIV patients and HS
(Table 2). Coinfected patients showed significantly higher
median serum levels of all of the inflammatory cytokines
tested, compared with levels in HIV patients or AVL-only
patients (Table 2).

The factors underlying this cytokine storm in coinfected pa-
tients were also analyzed (Table 3). For such an analysis, depen-
dent variables (cytokines) and independent variables (viral
load, LPS level, sCD14 level, and Leishmania infection) were
considered. LPS levels were positively correlated with IL-6 and
IL-8 levels (Table 3). Soluble CD14 levels were positively corre-
lated with IL-8 level and negatively correlated with MIP-1β
level. Moreover, Leishmania infection was positively correlated
with levels of TNF, IL-6, IL-8, IL-17, and MIP-1β. Taken to-
gether, these data suggest that an activated and inflammatory
state can indeed be observed in AVL/HIV patients.

DISCUSSION

A previous study demonstrated that AVL/HIV patients have
enhanced cellular activation levels, even during ART and after
antileishmanial treatment. Leishmania infection was the cofac-
tor associated with the percentage of CD38 expression among
CD8+ T-lymphocytes, independent of CD4+ T-cell counts and
viral load [11]. In the present study, we first investigated
whether the persistence of Leishmania parasites after therapy
could explain the activated phenotype observed in treated coin-
fected patients.

We found that both active AVL/HIV patients and those in
remission had a high percentage of CD38 expression among
CD8+T lymphocytes, indicating that coinfected patients have
an increased cellular activation status independent of the clini-
cal phase of leishmaniasis, ART use, or even receipt of anti-
leishmanial treatment. Interestingly, the majority of AVL/HIV
patients in remission showed lower parasite loads than patients
in the active phase of AVL. Blood parasite clearance in treated
coinfected patients appeared to be as effective as that in treated
AVL-only patients, as similar median numbers of estimated
promastigote forms were detected between the 2 groups of pa-
tients (MAG-1 copy numbers were undetectable in 5 AVL/HIV
only patients and 3 AVL only patients). On first glance, this
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result suggests that antileishmanial therapy was successful in
reducing the parasite load, despite HIV infection and poor
immune reconstitution (Supplementary Table). However, the

patients in remission did not completely clear Leishmania
kDNA from the blood, with kDNA remaining detectable even
after 6 months of antileishmanial treatment. This result is in

Figure 2. Microbial translocation and gut damage in patients with American visceral leishmaniasis and human immunodeficiency virus type 1 infection,
with or without AIDS (AVL/HIV). A and B, Plasma lipopolysaccharide (LPS) levels (A) and soluble CD14 (sCD14) levels (B) in AVL/HIV patients during active
disease and remission, in HIV patients, and in healthy subjects. C, Correlation between plasma LPS and sCD14 levels in AVL/HIV and HIV patients. D,
Plasma levels of intestinal fatty acid–binding protein (IFABP). E, Correlation between plasma LPS and IFABP levels in AVL/HIV and HIV patients. F, Plasma
levels of macrophage migration inhibitory factor (MIF). Each point represents 1 subject. The horizontal bars indicate the median value. In panels A, B, D,
and F, the Wilcoxon matched-pairs t test was used for 4 individuals evaluated before and after antileishmanial therapy. Data for each of these patients are
identified by a different color.
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accordance with similar studies in a cohort of treated coinfected
patients in the Mediterranean, thus reinforcing the notion that
AVL/HIV patients take longer to achieve Leishmania DNA
negativity after specific therapy [41]. However, despite success-
ful treatment, Leishmania organisms may remain in the bone
marrow, and this can explain the frequent episodes of disease
reactivation [6, 7, 41]. Herein, although parasite antigens cannot
be ruled out as an important factor driving cellular activation in
patients with AVL/HIV, we did not observe a positive correlation
between parasite load and the percentage of CD38 expression
among CD8+ T-cells in coinfected patients in remission. Such a
correlation was only observed for active AVL/HIV patients.

In addition to leishmanial antigens [13], LPS has been impli-
cated in T-cell activation in visceral leishmaniasis patients [32].
Considering that LPS also plays an important role in HIV path-
ogenesis [24], we expected that this microbial product would be
a relevant factor in maintaining the activation status in coin-
fected patients. Increased LPS levels were found in both active
and treated AVL/HIV patients, which is consistent with their
augmented cellular activation status. Additionally, the positive
correlation between LPS and IFABP levels supports the hypoth-
esis that LPS originates in the lumen, as IFABP is released after
enterocyte damage [23, 42]. However, LPS levels were similar
between coinfected and HIV patients, suggesting that HIV
infection itself is such a potent inducer of microbial transloca-
tion that LPS levels in visceral leishmaniasis patients
harboring this virus are already at a threshold. By consequence,
coinfected patients may have reached a plateau where the rate Ta
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Table 1. Multivariate Analysis of Factors Associated With Cell Ac-
tivation, Evaluated on the Basis of the Percentage of CD38-Positive
Cells Among CD8+ T Lymphocytes, Among Patients Coinfected With
Leishmania (Leishmania) infantum and Human Immunodeficiency
Virus Type 1 (HIV) and Those With HIV Infection Only

Percentage of CD38+ Cells Among
CD8+ T lymphocytes

Variable
Correlation
Coefficienta

Standard
Error P

CD4+ T-cell count (cells/mm3) −0.021 0.014 .875
Viral load (copies/mL) 0.049 0.001 .624

Leishmaniasis (presence or
absence)

0.817 5.478 .0001

LPS level (pg/mL) 0.373 0213 .001

sCD14 level (pg/mL) 0.061 0.002 .609

IFABP level (pg/mL) 0.153 0.002 .097
MIF level (ng/mL) 0.124 0.118 .218

Analyses adjusted for CD4+ T-cell count, viral load, LPS level, sCD14 level, MIF
level, IFABP level, and Leishmania infantum infection. HIV–infected patients
were also included in this analysis.

Abbreviations: IFABP, intestinal fatty acid–binding protein; LPS, lipopolysaccha-
ride; sCD14, soluble CD14; MIF, macrophage migration inhibitory factor.
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of translocation or even the rate of LPS clearance could not be
augmented any more.

After adjustment for confounding variables, LPS levels and
Leishmania infection were the factors significantly associated
with T-cell activation. In contrast, parasite load was not corre-
lated with the high percentage of CD38 expression among
CD8+ T-lymphocytes in a bivariate analysis, most likely because
the parasite burden was lower after therapy in comparison with
burden in patients with active disease. No association was de-
tected even when coinfected patients were matched by viral
load in a multivariate analysis (data not shown). Thus, we rea-
soned that the variable “Leishmania infection” discriminated
the presence or absence of the disease (visceral leishmaniasis)
together with its immunopathologic disorders.

Macrophages/monocytes and dendritic cells, in addition to
being the host cells harboring Leishmania amastigotes, are also
potent producers of proinflammatory cytokines upon Toll-like
receptor 4 activation by LPS [43]. In our study, we demonstrat-
ed an enhanced inflammatory cytokine milieu in AVL/HIV
patients that was independent of the clinical phase of leishman-
iasis, as serum levels were still elevated after antileishmanial
treatment. In addition, these levels were much higher than
those observed in HIV [44] or AVL-only patients [32–34]. The
data suggest that although LPS levels had reached a plateau, the
immunostimulatory functions of LPS-induced cytokines or
even the remaining leishmanial antigens may contribute to the
complex pathologic environment found in these patients. In ac-
cordance with our results, a previous study also described
higher levels of TNF and IFN-γ, which remained elevated 5
months after antileishmanial treatment and ART use [45].
Thus, as proposed for HIV-positive patients [46], the augmented

TNF levels observed in our coinfected patients could contribute
to microbial translocation by disrupting mucosal barrier integri-
ty. Moreover, the presence of Leishmania organisms in the
mucosal gut [47, 48] and the frequent diarrheal episodes in
AVL/HIV patients can be key factors in aggravating intestinal
permeability. Our results indicate that the cytokine network
induced by the Leishmania/HIV association differs from mono-
infections and suggest an in vivo synergistic effect in coinfected
patients.

An analysis of the factors that could be associated with this
cytokine storm revealed that LPS was positively correlated with
levels of IL-6 and IL-8, which were most likely produced by
LPS-stimulated innate cells. In coinfected patients, Leishmania
infection was also positively correlated with not only IL-6 and
IL-8 levels but also with TNF, IL-17, and MIP-1β levels. Thus,
AVL/HIV coinfection results in much higher levels of plasma
inflammatory cytokines, which in turn can contribute to the
vicious cycle of persistent immune activation [18, 19, 40].

In summary, the results suggest that LPS levels, along with
the immune consequences of leishmaniasis (“Leishmania infec-
tion” variable), are associated with high levels of cellular activa-
tion in coinfected patients. However, these cofactors appear to
contribute to cellular activation by enhancing the plasma cyto-
kine storm, not via the parasite burden, as low levels of Leish-
mania DNA were observed after specific treatment and ART
use.

Taken together, we speculate that the translocation of micro-
bial products may have more severe consequences in AVL/HIV
patients, resulting in enhanced inflammatory cytokines status,
which may promote and refuel cellular activation. The conse-
quences of persistent T-cell activation on immune reconstitu-
tion, culminating in the exhaustion of immune resources in
coinfected patients, need to be understood. Finally, it raises the
issue that the therapeutic strategies currently used could not be
sufficient to address all the pathogenic consequences of Leish-
mania-HIV coinfection. Our results may offer a rational basis
for the introduction of secondary chemoprophylaxis for leish-
maniasis or even for the use of antiinflammatory drugs or anti-
biotics against gram-negative bacteria.
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MIP-1β
level
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