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Protection against infectious diseases is
provided to young infants by passive
immunity through the transplacental
transfer of immunoglobulin G during
pregnancy and through immunoglobulin
A in breast milk [1–7]. Despite the
obvious benefits of these antibodies to
the youngest infants, their levels wane
over time, necessitating the development
of active immunity through vaccination.
The timing of primary vaccination is
complex, driven by the need to provide
protection prior to a time when the
infant is likely to be exposed to disease,
by the possibility of interference with
vaccine-induced immunity by passively
acquired maternal antibodies, and, final-
ly, by considerations of the developing
infant immune system [7–9].

The titers of transplacentally trans-
ferred passive antibodies (PA) provided
to infants are, in part, determined by an-
tibody titers present in the mother during
pregnancy. These maternal titers are

affected by her nutritional and immune
status, and evidence demonstrates that
antibody titers induced by vaccination
are typically lower than titers induced by
natural disease [3, 5, 6, 10]. After decades
of vaccination against childhood diseas-
es, it is clear that successful vaccine
programs have resulted in dramatic de-
creases in morbidity and mortality.
However, the increasing prevalence of
vaccine-derived maternal antibodies has
also led to unexpected outcomes. This is
most evident in the emergence of
measles susceptibility in young infants
living in highly vaccinated populations
where the measles vaccine has been in
use for decades [11–14]. Historically, in
developed nations protection against
measles among infants <12 months of
age was provided by a combination of PA
and herd immunity, supported by high
population immunization rates. How-
ever, this barrier has been disrupted,
to a certain extent, by global importation
of measles and, paradoxically, by the
success of the measles vaccine programs,
as vaccine-induced PA wanes earlier in
infants as compared to PA derived from
maternal natural infection [4, 8, 15, 16].
Measles outbreaks in countries with high
measles vaccine coverage have demon-
strated a shift in measles incidence to chil-
dren <12 months of age [17–19], before
primary measles vaccination commences

in most developed countries. Further, the
number of susceptible infants aged <12
months is expected to increase among
highly vaccinated populations as the ma-
jority of women in child bearing years
have vaccine-induced immunity to mea-
sles, with recent studies showing 99% of
infants born to vaccinated mothers lacking
detectable antibodies to measles by 6
months [3, 4].

Waaijenborg and colleagues eloquently
highlight this phenomenon in this issue
of the Journal by comparing titers of an-
tibodies against measles, mumps, and
rubella in 2 distinct populations in the
Netherlands, one with high vaccination
rates and one with opposition to vaccina-
tion and, thus, low vaccination rates and
presumably higher rates of immunity
induced by natural disease. As with pre-
vious studies, the authors note signifi-
cantly lower measles antibody titers in
infants born to women from the highly
vaccinated populations in comparison to
those born to mothers with presumed
naturally induced immunity. In addition,
the authors also compared mumps and
rubella titers in the 2 populations, show-
ing higher rubella titers in mothers from
the population with low vaccination
rates and low levels of mumps titers in
both groups. Varicella was used in this
study as a “control” disease because it is
caused by a naturally circulating virus in
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both populations and because varicella
vaccination is not used in the Nether-
lands; antibody titers were found to be
equivalent in the 2 infant groups. As the
authors correctly conclude, their findings
support the importance of surveillance to
define changing epidemiologic shifts re-
sulting from national vaccine policies.

The significance of the findings of
Waaijenborg et al is vital for the control
of measles in young infants, whereas
mumps and rubella are not typically seen
in young infants and, outside of congeni-
tal rubella, are generally not as severe.
Despite fairly low antibody titers to
mumps in infants, there has not been a
reported increase in disease in this age
group [20, 21]. Varicella is infrequently
seen in neonates, and while the severity
of disease is higher than in older age
groups, mortality is not [22]. This latter
phenomenon may change as vaccine im-
munity replaces naturally induced im-
munity for varicella in pregnant woman
and will require future monitoring. This
is in contrast to measles, which remains
the leading cause of vaccine-preventable
childhood mortality globally, with 164 000
deaths annually and the highest fatality
rates occurring during the first year of
life [17, 23, 24]. This high mortality rate
and the recent epidemics in the United
States, where 21% of reported cases and
26% of measles hospitalizations occurred
in children aged <12 months [25], have
created a renewed interest in an early
primary measles vaccine dose.

The newly emerging epidemiologic
shift in the early waning of PA among
infants described by Waaijenborg et al
highlights the evolving susceptibility of
young infants in highly vaccinated popu-
lations to some vaccine-preventable dis-
eases. This has also created opportunity
for studies focusing on the ontogeny of
viral vaccine immunity in infants in the
absence of PA. The majority of work in
this area has centered on measles, given
the high infant mortality of this disease
in this age group. Mumps has not been
targeted for early vaccination because re-
cent outbreaks suggest that, unlikemeasles

and rubella, mumps immunity provided
by measles, mumps, and rubella vacci-
nation may not persist and, therefore, an
earlier dose may not be indicated [26].
Measles vaccination of infants as young
as 3 months has shown partial suc-
cess [27–29], with limited immune re-
sponses in younger infants attributed to
interference from PA and to limitations
of the developing immune system [8, 20,
21, 27, 28, 30, 31]. Despite this reduced
immunogenicity, an early primary mea-
sles vaccination strategy was effective in a
measles outbreak in the United States, as
well as in countries where measles is
endemic [31, 32].
Numerous studies have outlined the

challenges surrounding early infant vacci-
nation. In the presence of PA, measles
humoral immunity is diminished, but im-
portantly, at least for measles, T-cell re-
sponses are induced even in young infants
in the presence of PA and serve to boost
the humoral responses to antigen reexpo-
sure, such as after repeat vaccination.
These boosted antibody responses are of
high avidity, suggesting an anamnestic re-
sponse that is likely to be rapidly protec-
tive [20, 33, 34]. Additionally, T-cell
immunity persists after early measles vac-
cination [35]. This same PA interference
has not been seen with other viral vac-
cines, specifically mumps, rubella, and
hepatitis B [6, 20, 21], but it has been doc-
umented with rotavirus vaccine, at least
among infants living in developing coun-
tries [7]. The interfering effects of PA
constitute an area of active research, as the
mechanisms responsible for the blunting
effects of PA in humans are not complete-
ly known and would be important to un-
derstand if vaccines that can overcome
this obstacle are to be developed.
It is clear that T-cell immunity to viral

vaccination is present, even when cur-
rently available measurements demon-
strate that B-cell immunity may in some
cases be lacking, raising the question of
what the best correlates should be for
measuring vaccine efficacy in infants.
The efficacy of early measles vaccination
in epidemics in the United States and in

the developing world where measles is
endemic supports the viability of early
measles vaccination, despite the reports
of poor antibody responses under these
circumstances. Newer research methods
have allowed for more detailed and robust
antigen-specific B-cell memory determi-
nations, showing that standard antibody
assays may not be predictive of true B-cell
memory responses [36], and these new
tools will be important for studies in young
infants in order to understand the nature of
ontogeny and function of B-cell immunity.

Data from early measles and mumps
vaccine studies have also highlighted other
immunologic findings, such as decreased
T-cell production of interferon γ, as well
as the immature maturation of the innate
immune responses [20, 37, 38]. Studies
using measles vaccination in the develop-
ing world indicate that early measles vac-
cination gives a survival advantage not
only against measles mortality, but also
against all infection-attributable mor-
tality, suggesting a nonspecific priming
of the infant immune system [39]. This
phenomenon is supported by work using
BCG vaccination to boost the responses
of other vaccines given simultaneously at
birth [40]. Taken together, this work
begins to define some of the mechanisms
that drive the developing immune system
and are important for understanding how
best to target the immunologic environ-
ment for vaccine development in infancy,
such as with the use of adjuvants.

Waaijenborg et al report on the sus-
ceptibility of infants resulting from suc-
cessful vaccine programs in the developed
world. Given the high infant mortality
frommeasles, low level but continuedmea-
sles importations, and the potential for a
growing population of infants susceptible
to important diseases such as measles at
younger ages, early vaccination may be the
most effective strategy for protection against
vaccine-preventable diseases during the
first year of life. Such a strategy must be
pursued within the context of better defin-
ing the developing infant immune system.
In addition, work is needed to determine
better correlates of viral vaccine efficacy in
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young infants and to delineate both the spe-
cific and global contributions that vaccines
provide to the developing immune system.
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