EDITORIALCOMMENTARY

Naturally Acquired Immunity Against Human
Papillomavirus (HPV): Why It Matters in the HPV

Vaccine Era

Silvia Franceschi and lacopo Baussano

International Agency for Research on Cancer, Lyon, France

(See the major article by Castellsagué et al on pages 517-34.)

Keywords. HPV; HPV vaccine; immunity; antibodies; mathematical models.

Scientists do not know precisely which el-
ements of the immune system are impor-
tant in preventing or resolving human
papillomavirus (HPV) infections in unvac-
cinated women. HPV has a battery of im-
mune-evasion mechanisms that include
hiding within the host mucosal cells, low-
level production of late (L) proteins, and
inhibition of innate immunity and cell-
mediated response by early proteins [1].

HPV vaccine trials show that suffi-
ciently high levels of neutralizing anti-
bodies against viral capsid strongly
protect women who are negative for vac-
cine types at baseline against homologous
(same-type) HPV infection. The mea-
surement of HPV antibodies is also im-
portant for identifying unvaccinated
women who have mounted an antibody
response following previous exposure to
HPV infection and may, therefore, be
naturally protected. However, only ap-
proximately half of women seroconvert
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within 18 months after HPV infection
[2]. The interpretation of HPV serology
is additionally complicated by substantial
differences across assays used in different
studies (eg, detection ranges, targeted
HPYV types, and epitopes) [3-5]. Despite
these limitations, seroprevalence studies
have been essential in understanding HPV
exposure [6] and infection trends [7], and
have more recently started providing pro-
spective estimates of naturally acquired
immunity after HPV infection [4].

In this issue of The Journal of Infec-
tious Diseases, Castellsagué and col-
leagues [8] report on the association of
HPV types 16 and 18 antibody levels
and the development of new homologous
HPV infections and cervical lesions in
>8000 women (15-25 years of age) who
comprised the control arm of a multina-
tional randomized trial of the HPV-16/18
vaccine (PATRICIA). Findings are based
on a virus-like particle (VLP)-based
enzyme-linked immunosorbent assay
(ELISA) that measures a broad spectrum
of neutralizing and nonneutralizing anti-
bodies directed against the L1 capsid pro-
tein. High titers of HPV-16 antibodies,
but not of HPV-18 antibodies, were sig-
nificantly associated with a lower risk of
incident and persistent homologous
type infection, and also with a lower
risk of atypical squamous cells of

undetermined significance (ASCUS) and
cervical intraepithelial neoplasia (CIN)
grades 1-3. Compared with HPV-16-
seronegative women, new incident HPV-16
infections were reduced by 36% (95%
confidence interval [CI], 22%-47%) in
HPV-16-seropositive women (ie, 15% of
unvaccinated women). Protection signifi-
cantly increased with the increase in
HPV-16 antibody titer; it was 66% (95%
CI, 46%-79%) in the highest HPV-16 an-
tibody quartile [8].

In the control arm of the Costa Rica
Vaccine Trial, Safaeian et al [4] used the
same VLP ELISA as Castellsagué et al
[8] and reported the same seroprevalence
(25%) at enrollment for HPV-16 and
HPV-18. A significant reduction of new
homologous type infections was observed
in the highest tertile of HPV-16 and
HPV-18 antibodies—protection of 50%
and 64%, respectively.

Naturally acquired protection in older
women was assessed in a population-
based cohort study (median age, 37
years), also from Costa Rica [9], using a
different VLP ELISA than the 2 vaccine
trials [4, 8]. Seroprevalence at enrollment
was 19% and 18% for HPV-16 and HPV-
18, respectively. A significant protection
(46%) from subsequent homologous in-
fection was shown for HPV-16 but not
HPV-18.
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A few studies [3, 9, 10], including that
by Castellsagué et al [8], raised the pos-
sibility that serological response to
HPV-16 and HPV-18 in women might
not be the same. In fact, some studies
showed similar seroprevalence of the 2
types in the general female population
despite the consistently higher preva-
lence of HPV-16 DNA than HPV-18
DNA in vaginal samples [3, 10]. The
evaluation of natural protection against
HPV-18 is further complicated by the
rarity of HPV-18-related clinical end-
points, including ASCUS and all grades
of CIN [11].

Information on naturally acquired pro-
tection to HPV infection in males is
much more limited than in females.
HPV-16 incidence did not differ signifi-
cantly by HPV-16 serostatus in a cohort
of adult men [12] in whom the same
VLP ELISA as in Wentzensen et al [9]
was used. In fact, higher HPV seropreva-
lence has been consistently reported for
different HPV types in women than
men from the same source population
[6, 13]. The observed difference by sex
in immune response may be related to
the tissues predominantly affected by
HPYV infection between the 2 sexes, that
is, mucous membranes in the female gen-
ital tract vs keratinized epithelia in the
male genital tract.

From a practical viewpoint, Castell-
sagué et al [8] contribute, together with
some previous work, to fill a knowledge
gap that hampers projections on the im-
pact of HPV vaccination from dynamic
transmission models. In the lack of suffi-
cient data on naturally acquired protec-
tion, models published between 2002

and 2013 have assumed different patterns
including complete lifelong immunity
[14-19] and no natural immunity [17-
24]. Partial immunity [19, 25-27] or wan-
ing of immunity [24, 28-32] has also been
hypothesized, as well as boosting of im-
munity by repeated HPV infections [33]
(Table 1).

The existence and the magnitude of
naturally acquired protection against ho-
mologous HPV reinfection are crucial to
assess the effectiveness of vaccinating sex-
ually active young women [24, 34] and
boys in addition to adolescent girls [18,
19, 25, 26]. If naturally acquired protec-
tion is absent or weak, vaccination of sex-
ually active young women would be
attractive because of the large fraction of
them who may still be susceptible to HPV
infection despite having been already in-
fected and having cleared the infection in
the past. Similarly, the existence of a large
pool of susceptible men despite previous
HPV infection would call for vaccination
of boys in order to reduce the circulation
of the virus in a population and eventual-
ly reach a desirable herd immunity
threshold, that is, a fraction of protected
individuals that can even prevent the in-
fection from spreading to unvaccinated
people [35].

In conclusion, the findings from Cas-
tellsagué et al [8] show that approximate-
ly 1 of 7 young unvaccinated women in
the PATRICIA trial has some protection
from HPV-16 infection because of natu-
rally acquired antibodies. It is impossible,
at the moment, to say if all HPV-16-sero-
positive women benefit from a partial pro-
tection from HPV-16 reinfection or if
approximately one-third of them benefit

Table 1.
Naturally Acquired Protection

Human Papillomavirus Transmission Models by Assumptions on Pattern of

Degree of Protection Duration of Protection No. of Models References

Complete Lifelong 6 [14-19]
Waning 6 [24, 28-32]

Partial Lifelong 4 [19, 25-27]
Increasing with age 1 [33]

None 8 [17-24]

from full naturally acquired immunity.
This proportion may be different in older
women; for example, it may be larger if
they had had more time or chances to se-
roconvert or smaller if they tended to lose
HPV antibodies. Naturally acquired im-
munity has not been demonstrated in
men. Better understanding of these phe-
nomena is crucial to model the effective-
ness of different vaccination strategies.
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