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More than 2.5 billion individuals living in
the tropics are estimated at risk of con-
tracting at least 1 neglected tropical dis-
ease. Half of these individuals may be
exposed to or have concomitantly ≥2 ne-
glected tropical diseases, including those
caused by helminths, schistosomes, para-
sitic protozoans, and viruses. Although
the death toll caused by all neglected
tropical diseases is not as high as for
AIDS or tuberculosis, neglected tropical
diseases still affect more than a million
individuals, most of whom live in the
poorest regions of Africa, Asia, and the
Americas. In addition to the high mortal-
ity, most neglected tropical diseases are
due to chronic infections and, therefore,
have an enormous impact on childhood
growth, disability-adjusted life-years,
and productivity-associated economic
losses targeting mainly the rural and
poorest urban areas of developing
countries [1].

Chagas disease, caused by the protozoan
parasite Trypanosoma cruzi, is a proto-
typical example of an neglected tropical
disease of Latin America, with an estima-
ted 10 million people chronically infected,
causing a large burden of disability-ad-
justed life-years and billions of annual
costs [2]. Chagas disease is endemic in
21 countries, and, in some instances, the
number of individuals coming in contact
with the parasite (estimated on the basis
of seroprevalence) can be as high as
6.75% of the population, as in Bolivia
[2, 3]. In addition, because of the migra-
tion of chagasic individuals, the disease
has also been considered a health prob-
lem in developed countries where the dis-
ease is not endemic, such as the United
States and Spain [4].
Upon contact with the parasite, human

hosts may develop a patent parasitemia
(acute phase) that, in most cases, will re-
solve after a few weeks.
Two-thirds of individuals will become

serologically positive for T. cruzi antigens
but will never develop symptoms (the in-
determinate form of the disease); a dec-
ade or more later, one-third of patients
will develop chronic forms of the disease,
which can be either cardiac (most com-
mon), digestive (megaesophagus and meg-
acolon), or cardiodigestive.
The pathogenesis of chronic Chagas

disease is still a matter of intense debate.
Some researchers initially proposed that

there is an autoimmune response sup-
porting the chronic inflammatory process
[5, 6]. More recently, the identification of
parasite DNA in the lesions has led to the
hypothesis that parasite persistence is the
main driving force leading to tissue
inflammation and destruction [6, 7].
However, very recent observations have
described heart tissue pathology in the
absence of living parasites [8].

Treatment for Chagas disease is effec-
tive for acute cases and for children up
to 14 years old, with cure rates as high
as 100%, and is therefore recommended by
the World Health Organization [9]. In
adults, treatment success depends on the
type of evaluation, using clinical and/or
serologic indicators. Although definitive
results of large randomized clinical trials
(TRAENA and BENEFIT) are still
forthcoming, based on previous non-
randomized studies, the Latin American
Network for Chagas Disease proposes
that treatment should be mandatory [10].

Similar to other neglected tropical dis-
eases, prevention needs to be inexpensive,
considering the poor economic situation
of the regions where much of the disease
is transmitted. The most-effective tradi-
tional methods for the prevention of
Chagas disease are based on control of
the triatomine vector, using insecticides
and blood screening prior to transfusions.
Southern Cone countries (Argentina,
Brazil, Chile, and Uruguay) have developed
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successful programs of vector control/
elimination and blood screening before
transfusion, leading to a significant reduc-
tion in transmission of the infection in
these countries in the past 30–40 years [11].

Vaccine development as part of the
strategy for disease control and eradica-
tion was once commonly not considered
for Chagas disease [2], and the reasons
for this are many. First, there are the suc-
cesses of vector control and blood bank
screening programs. Second, despite nu-
merous efforts, no human vaccine against
any parasitic disease has been success-
fully developed. These factors, combined
with the shortage of resources for Chagas
disease research, have kept vaccine devel-
opment off priority lists.

Against this historical trend, recent
studies have added a different perspective
of the problem. These studies have indica-
ted that vaccination can be cost-effective
and economically feasible for a wide
range of scenarios, even when the risk
of infection is as low as 1% and vaccine
efficacy is as low as 25% [12]. These stud-
ies support the concept that, despite all of
the difficulties, the development of a vac-
cine against Chagas disease should be
pursued. These studies have raised the in-
terest of a nonprofit foundation devoted
to the development of vaccines against
neglected tropical diseases [13].

Because parasites have multiple devel-
opmental forms, which transiently express
distinct antigens, immunity to them is
very complex. Not only do parasites shift
their antigens during their life cycles,
they also strongly modulate the immune
response in their favor. The complex bal-
ance between immune response and para-
site escape mechanisms allows the survival
of both parasite and host and the estab-
lishment of chronic infection [14]. The de-
velopment of a successful vaccine will
depend on how this equilibrium can be
shifted in favor of the host, leading to
elimination of the parasite.

More than 20 years ago, CD8+ T cells
were described as being critical for
naturally acquired resistance against ex-
perimental infection with T. cruzi [15].

Accordingly, the epitopes recognized by
CD8+ T cells from mice and humans
have been identified, and immunodomi-
nant epitopes have been shown to be pre-
sent on proteins of the trans-sialidase
family [16–19]. The immunodominant
CD8 epitopes are certainly important tar-
gets for protective immunity. Neverthe-
less, the fact that trans-sialidases are a
family of highly diverse polypeptides
may complicate their use as part of broad
subunit vaccines.
On the other hand, several proteins

also have subdominant CD8 epitopes
[20, 21]. These subdominant epitopes
elicit weaker immune responses that
can, nonetheless, promote host resis-
tance [22, 23]. Most relevant for the pur-
pose of vaccine development is the fact
that subdominant epitopes may be
more conserved across distinct parasite
strains.
Corroborating the studies on the im-

portance of CD8+ T cells during naturally
acquired resistance against experimental
infection with T. cruzi, studies of vaccina-
tion using recombinant proteins, plasmid
DNA, recombinant viruses, bacteria, and
synthetic peptides have provided strong
evidence that host protection can only be
achieved in the presence of CD8+ T cells.
Protective immunity is simply not ob-
served in gene-deficient animals without
CD8+ T cells or upon depletion of these
cells by use of treatment with specific an-
tibodies [24–31]. These findings reinforce
the concept that the development of a
successful vaccine against Chagas disease
should, indeed, stimulate CD8+ T cells.
CD8+ T cells recognize short peptides

bound to major histocompatibility com-
plex (MHC) class I molecules. Because
humans are highly polymorphic for
MHC I alleles, a number of peptides
will have to be discovered and assembled
to generate a subunit vaccine to elicit
broad immunity in a large, heterogeneous
population. These multiple peptides must
bind to a variety of MHC I alleles and be
present in a vast number of parasite
strains. To search and identify these
short epitopes, a number of computer

programs are being developed, and
these bioinformatics tools are used for
the identification of CD8+ T cell epitopes
within viruses and other pathogens [32].
Parasites, however, have large genomes,
and some, as in the case of T. cruzi,
have recently been sequenced [33]. In
the current issue of The Journal of Infec-
tious Diseases, Teh Poot et al use such
bioinformatics tools to search for CD8+

T-cell epitopes in the large genome of
T. cruzi [34].

Using this approach, the authors iden-
tified a number of candidate CD8+ T-cell
epitopes within hypothetical proteins and
proteins with putative functions. These
epitopes as synthetic peptides were then
tested for their ability to stimulate inter-
feron γ production by specific T cells ob-
tained frommice previously infected with
T. cruzi. Because of their ability to restim-
ulate T cells that were primed during in-
fection, they were selected to be part of a
subunit therapeutic vaccine against
T. cruzi infection.

The authors’ prediction was that these
peptides would constitute important
targets for the development of a CD8+

T cell-based therapeutic vaccine against
this parasitic disease. The prediction was
confirmed, as therapeutic vaccination
with a mixture of these peptides in the
presence of the Toll-like receptor 4 ago-
nist monophosphoryl lipid A led to a
significant control of the infection in vac-
cinated mice. This disease control was
estimated by significant reductions in
parasitemia, parasite burden in the tissue
of the infected mice, and cardiac tissue
damage, as well as an increase in mice
survival.

Similar strategies of reverse vaccinology
have been proposed in the past for para-
sites with large genomes [32]. However,
to date, the use of bioinformatics has never
been as successful as in the study by Teh
Poot et al. This success opens new avenues
to a general strategy that may greatly facil-
itate the development of vaccines against
parasites and provides a new tool for the
prevention and treatment of neglected
tropical diseases.
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